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Since 1/T;, of protons of tissue water is generally much greater than 1/7, at typical
imaging fields, small single-ion contrast agents—such as Gd(DTPA), which make com-
parable incremental contributions and therefore smaller fractional contributions to 1/7;
compared to 1/7,—are not as desirable for contrast-enhancement as agents that could
enhance 1/T; preferentially. In principle, such specialized agents will only be effective at
higher fields because the field dependence (dispersion) of 1/T; is such that it approaches
zero at high fields whereas 1/7%; approaches a constant value. The residual 1/75 is called
the “secular” contribution and arises from fluctuations in time—as sensed by the protons
of diffusing solvent or tissue water molecules—of the component of the magnetic field
parallel to the static applied field. For solutions or suspensions of sufficiently large para-
magnetic or ferromagnetic particles (2250 A diameter), the paramagnetic contributions
to the relaxation rates satisfy 1/7, > 1/7 at typical imaging fields. We examine the theory
of secular relaxation in some detail, particularly as it applies to systems relevant to magnetic
resonance imaging, and then analyze the data for solutions, suspensions, or tissue containing
ferritin, erythrocytes, agar-bound magnetite particles, and liver with low-density composite
polymer-coated magnetite. In most cases we can explain the relaxation data, often quan-
titatively, in terms of the theory of relaxation of protons (water molecules) diffusing in the
outer sphere environments of magnetized particles, The dipolar field produced by these
particles has a strong spatial dependence, and its apparent fluctuations in time as seen by
the diffusing protons produce spin transitions that contribute to both 1/7T, and /7; com-
parably at low fields; for the larger particles, because of dispersion, the secular term dominates
at fields of interest. On the basis of the agreement of theory with data for solutions of small
paramagnetic complexes, large magnetite particles, and liver containing low-density poly-
mer-coated magnetite agglomerates, it is argued that the theory is sufficiently reliable so
that, e.g., for ferritin—for which 1/7, is unexpectedly large—the source of its large relaxivity
must reside in nonideal chemistry of the ferritin core. For blood, it appears that diffusion
through intracellular gradients determines 1/75. @ 1987 Academic Press, Inc,

INTRODUCTION

At typical imaging fields, the transverse relaxation rate 1/75 of protons of soft tissue
is much greater than their longitudinal rate 1/7,. Moreover, these rates are different
functions of the strength of the magnetic field and, at very low imaging fields, appear
to become equal (cf. (/-3)). The dependence of these rates on magnetic field is known
as nuclear magnetic relaxation dispersion (NMRD). The trend toward equality of the
two relaxation rates at low fields relates to the fact that tissue water is highly mobile
and, as a result, the relaxation properties of tissue protons—including tissue containing
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paramagnetic agents—are much like those of water solutions with analogous mac-
romolecular and ionic contents (I, 4-6); for such liquids, 1/7 = 1/T; in the limit of
zero field (cf. (7)). Dispersion of the relaxation rates with increasing field occurs when
a representative tissue proton diffusing in the local internal magnetic field experiences
field fluctuations that become comparable and then slow compared to the proton
Larmor precession frequency. In diamagnetic tissue, the fluctuating component of the
local field results mainly from the magnetic moment of the other proton of the water
molecule, whereas in tissue containing paramagnetic agents the field is contributed to
by these agents as well. The times that characterize fluctuations of the components of
the local field are called correlation times and can range over many orders of magnitude,
depending on the particular relaxation mechanism. The phenomenological basis for
this view of tissue water being much like solvent water, as well as the essentials of
relaxation theory in this context (the concept of motional narrowing), has been recently
reviewed (/, 4, 7).

A major distinction between 1/7, and 1/75, which follows directly from very general
aspects of the theory of motional narrowing, is that 1/7 always decreases (disperses)
toward zero for sufficiently high external fields whereas 1/7), disperses to a nonzero,
field-independent value, usually to about 20% of its low field limit, the precise value
depending on the relaxation mechanism. This residual transverse relaxation rate at
high fields is sometimes termed the “secular’” contribution (8), whereas all other con-
tributions to both 1/7, and 1/7}; are “nonsecular.” The secular, nondispersive, term
results from fluctuations of the component of the internal field parallel to the external
static field By ; these cause phase shifts in the Larmor precession of the magnetization
of the proton ensemble which, when they have a random component, contribute to
1/T>. The nonsecular terms result from fluctuations of components of the local field
within the transverse plane; these alter the longitudinal magnetization and therefore
contribute to 1/7, as well.

The half-way point of any dispersive component of the NMRD profile occurs at a
field for which the product of the corresponding correlation time and Larmor angular
frequency is of order unity. In body fluids (e.g., blood and CSF, in contrast to soft
tissue), the relevant correlation times are short (107'°to 107" s) and, as a result, typical
imaging fields correspond to relatively low fields and, accordingly, 1/7' and 1/7; are
about equal. Similarly, the correlation times that characterize the interaction of the
protons of body fluids with small paramagnetic chelates (€25 A diameter) are also
short, causing their paramagnetic contributions to 1/7; and 1/T;, to be comparable
as well, on both a relative and an absolute scale. For this reason, such agents, typified
by GA(DTPA), can be of great utility in a clinical setting for examining the peripheral
circulation. However, in soft tissue (where correlation times are often much longer),
because of dispersion, the values of 1/7 are about 10-fold greater than 1/7) in the
imaging range, and images are generally 1/7>-weighted to speed data acquisition. It
follows that agents such as Gd(DTPA) are not too useful in this environment; para-
magnetic agents that enhance 1/7, of soft tissue preferentially at the fields of interest
would accordingly be of greater clinical utility. The problem is to find a paramagnetic
agent for which the relevant correlation time is appropriately long. Conventional
thinking would suggest that these agents be rather large: perhaps clusters of paramag-
netic ions acting collectively rather than individually and independently. For example,
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from the darkening of liver and spleen in 1/7T;-weighted images of thalassemic patients
with iron-overload disease (9, 10), one would infer that the rather large iron-storage
proteins ferritin and hemosiderin induce a substantial secular relaxation in tissue water
protons. Reasoning from there, as well as from high-resolution data on deoxygenated
blood (11, 12), dominance of the secular term might also be expected from pools of
blood, e.g., from trauma-induced hematomas.

In a sample immersed in an ideally uniform field, all the protons of the sample
precess at the same Larmor frequency and the transverse components of the precessing
magnetization of each spin add constructively to produce the proton signal. However,
if the field is not uniform, the phases of the proton precession in different parts of a
single sample can lose synchronization with each other and contribute destructively
to the signal amplitude because of a spatially dependent Larmor precession frequency
(which can arise from nonuniformities of the static field); the result can be an apparent
increase in the rate of decay of the transverse magnetization, i.e., in 1/7,. That the
extent of this increase depends on the method of measurement is well known; the
original spin-echo method of Hahn (/3), and its subsequent generalizations by Carr
and Purcell (/4) and Meiboom and Gill (15) are all ways of recovering, in part, a loss
in net transverse magnetization (arising from field inhomogeneities) that otherwise
appears as an increase in 1/75. The associated nonrecoverable part arises from diffusion
of the protons in the inhomogeneous field, a process that destroys any underlying
coherence in the relative precessional motion of all the protons of a sample. As will
be seen, such diffusion in the neighborhood of large paramagnetic particles can lead
to a dominant secular term. Clearly, however, care must be exercised in defining 1/
T, in these circumstances, since its observed value can depend on the method of
measurement.

The theory of transverse relaxation in the presence of nonuniformities of the static
field, either external or internal, has not been systematically examined, particularly
for the secular terms. Perhaps more precisely put, a realistic model from which reliable
predictions can be extracted in the general case has not yet been given. In the present
work, we consider the many aspects of transverse relaxation of solvent protons in the
presence of impenetrable magnetized spheres of uniform size (“particles™), as a function
of particle concentration, with emphasis on those aspects of the problem that cause
the secular term to dominate at imaging fields. Larger spheres, containing many para-
magnetic ions, will become important; their magnetization can arise from the para-
magnetism of their ions (/2) or the paramagnetism of the solvent in which they are
embedded (/7). We obtain quantitative results that are directly applicable to ferritin
and hemosiderin (/6) and to protons diffusing inside and outside of deoxygenated
erythrocytes (/1, 12). The magnetization of the particles can also arise from the per-
manent magnetization of small ferromagnetic and ferrimagnetic particles such as
magnetite (17, 18). For such systems, precise theoretical results are computationally
difficult to obtain, though it is not difficult to describe the essence of the phenomena
and estimate the magnitude of the relaxation effects.

What is special about paramagnetic spheres is that their magnetization is oriented
along the external field; it does not fluctuate in direction as a result of either para-
magnetic relaxation processes—as does that of single-ion complexes such as
Gd(DPTA)—or rotation of the particles. With the elimination of these rapidly fluc-
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tuating contributions to the local field, the correlation time may lengthen sufficiently
to make possible a dominant secular term at imaging fields. We first review the rea-
sonably well-developed theory of relaxation of solvent protons diffusing in the outer
sphere environment of single, noninteracting, paramagnetic ionic complexes (/9-23),
called ““outer sphere relaxation,” and then compare these theoretical results, rewritten
in a form convenient for the purpose, with available data for systems of relevance to
contrast enhancement in MRI. The interesting and germane effects will be seen to
depend on the geometrical scale of the particles as well as on the strength of the
external static field: it then becomes important to be able to estimate the particle
diameter at which the transition from one type of dependence of the relaxation rates
on particle concentration to another occurs.

THEORETICAL BACKGROUND
Microscopic Outer Sphere Theory

The problem of outer sphere relaxation of solvent protons in a dilute solution of
small isotropic paramagnetic complexes, for which the contributions to the relaxation
rates are assumed to be independent and additive, has been addressed by many authors
(19-22); their results have been summarized recently in a form relevant to the present
concerns (23). For a concentration [C] of particles in an external field By, with spin
S and gyromagnetic ratio +, (7, is the proton ratio), diffusion constant D relative to
the solvent protons, for which the protons can approach no closer than R, and for
which the only contribution to the fluctuations in the local field arises from diffusion,
the paramagnetic contributions to the longitudinal and transverse relaxation rates are

1 (32 [C]
= 7 l
T, (405)7I sk 1000 (RD)[ J(wsTr) + 3 j(wiTR)] [1a]
and
| 327 3 [C]
T + Ib
T (405)71‘}’%h S+ 1) om 1000 (RD)[6 5 j(wstr) + 1.5 j(wiTr) +2j(0)], [1b]
where
Tr=R?*D [1c]
is the time required to diffuse a distance of the order of R;
ws = vsBo, wy = v1B8o [1d]

are the paramagnetic ion and proton Larmor angular frequencies, respectively; and
the spectral density functions j(w) are given by

1 4+ (1/4)(iwrg)'"?
| + (iwT )" + (4/9)(iwrg) + (1/9)iwTR)*?|’

J(w)=Re [le]
where the secular term
J(0)=1. [1f]
Re means ““the real part of.”
In this system, even though the paramagnetic moments themselves are aligned
along B,, the orientation of their dipolar fields assumes all directions in space, de-
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pending on the spatial position relative to that of the dipole. Accordingly, the diffusing
protons see comparable (but not identical) fluctuations of all components of the local
field, with the result that the magnitudes of the secular and nonsecular contributions
are always comparable. It follows that the only way in which one can have 1/7; > 1/
T, is for the j(w) terms to have dispersed substantially. The variation with field of 1/
T, and 1/T, as expressed by the spectral density terms in Egs. [1a] and [1b] is shown
in Fig. 1 for 100-A-radius spheres at 35°C, just large enough so that the secular terms
dominate relaxation at higher imaging fields.

Implicit in the derivation of j(0) is the assumption that the radiofrequency (rf) field
B, is negligibly small; more specifically, v;B,7x < 0. When this condition fails, the
secular term itself decreases with increasing B, . The result is a more general transverse
relaxation known as “longitudinal relaxation in the rotating frame,” or 1/7, (cf. (2,
3, 24)). For typical values of B,, about 107* T, dispersion of the secular term will
become significant for R =2 0.5 um. Moreover, such effects can be emphasized by
increasing the strength of the rf field, and images based on the dispersion of 1/7,
have been reported (2).

The coefficient of the dispersive terms, Egs. [1a] and [1b], can be rewritten in a
form that is particularly convenient for the present purposes. The magnetic moment
w of each particle is given by

u?=y3h3S(S+1), [2a]

and dw, the equatorial magnetic field at the surfaces of the particles (in units of the
proton Larmor frequency) is
bw = yiu/R°. [2b]
Therefore, at zero field,
1 | 16
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FiG. 1. The dispersive spectral density terms of Egs. [1a] and [1b], showing the field dependence, at 35°C,
of outer sphere relaxation of solvent protons due to diffusion of solvent in the local dipolar magnetic field
of magnetized solute spheres. The size of the spheres (100 A radius) was chosen to make the secular (non-
dispersive) component of 1/T, dominate at higher imaging fields.
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and the secular term becomes

1 16
—— =—f(dw)?*7g, 2d
Tom 135704V 7 e
where fis the volume fraction from which solvent is excluded. A major condition for
the validity of the theory is that

(bw)Tr<1, [2e]

a condition that (for the present purposes) only breaks down for large, solid, ferro-
magnetic particles, =250 A diameter. The spatial distribution of magnetic dipolar
moments within radius R must be spherically symmetric, but may be otherwise ar-
bitrary, for Egs. [1a] and [1b] to hold. For large particles, composed of many para-
magnetic ions, it becomes convenient to relate u to M,, the magnetization (magnetic
moment per unit volume) of the particle, by

u=4rM,R>/3; [2f]

0w is then seen to be proportional to M, and independent of R.

Equations [2c] and [2d], together with Eq. [le], show how all contributions to the
outer sphere relaxation rates vary with particle size for a fixed volume fraction of
uniformly magnetized particles, i.e., for fixed fand éw. The correlation time 7 is the
only variable that depends on the size of the particles; from Eq. [1c], 1/T, and 1/7T5
increase as the square of the radius of the particles. Put another way, for outer sphere
relaxation, when Eq. [2e] holds, the same amount of magnetized material is much
more effective when distributed as fewer large particles than as a greater number of
smaller ones.

The several derivations of these equations (/9-22) all use the traditional quantum-
mechanical approach (25) in which rate equations are set up for the “flip-rates” of
the solvent protons in terms of transition probabilities, which in turn are computed
using time-dependent perturbation theory in a standard way. The interaction respon-
sible for relaxation is the magnetic dipolar interaction of the proton spins with the
fields produced by the paramagnetic ions, an interaction that fluctuates in time because
of the relative diffusive motion of solvent molecules and particles. In the earlier work
(19, 20), no boundary conditions are imposed on the diffusing water molecules; the
volume occupied by the particles is only excluded in the final integration that gives
the relaxation rate. In the later work (21, 22), the impenetrability of the particles is
included explicitly in the boundary conditions on the diffusion equation as well as in
the final integration. In both cases, however, the diffusing waters can get infinitely far
from a paramagnetic particle. (As noted earlier (25), the predictions of the two ap-
proaches are indistinguishable except that the first are uniformly lower by a factor
9/10). The correlation time that characterizes the interaction is 7z, Eq. [1c]. An im-
portant, but implicit, assumption of the calculation is that the time-averaged field
experienced by a single proton as it diffuses through the long-range, spatially varying
dipolar fields of the paramagnetic centers can be replaced by a spatial average, at any
given time, over all the solvent protons. This assumption is rarely violated for small
particles. As an example, even for particles as large as, say, ferritin (130 A diameter)
at the density needed to store the normal iron content of liver (about 0.1 mg/ml), the
intersphere spacing 24 can readily be estimated to be about 1200 A, and 7, = 4%/D,



RELAXATION BY MAGNETIZED SPHERES 329

the time required for solvent to diffuse this distance, is about 1 us. By comparison,
typical relaxation times are a few tenths of a second (16) and the assumption is valid.
However, for large particles (e.g., erythrocytes) at high densities, the assumption may
lose its validity.

Two-site Exchange and Macroscopic Theory

Equation [2c] is essentially identical in form to the results for a well-defined two-
site model obtained by Swift and Connick (26) and independently by Luz and Meiboom
(27). These authors considered exchange of water protons between solvent and a class
of binding sites (in low concentration) that have a characteristic chemical shift, i.e., a
site-specific local field. For a difference of chemical shift Aw and rapid exchange between
sites and solvent, their computed contribution to 1/75, which is secular because Aw
is an effective field parallel to By, is

1/ Togee = fldw)’ T, [3a]

where 7y is the mean lifetime of a proton in the binding sites and f'is the fraction of
protons bound.

There is a fundamental distinction between the model of Swift and Connick and
that of Luz and Meiboom, a distinction that will become germane when considering
relaxation in blood, below. For Luz and Meiboom, Aw represents a contact interaction
that is taken as the sole relaxation-producing interaction at the binding site. By contrast,
the Swift-Connick result, Eq. [3a], is a limiting case of a model in which protons have
a characteristic transverse relaxation rate 75y when bound as well as a chemical shift
relative to solvent. One criterion for Eq. [3a] to hold is that exchange be rapid; i.e.,
™™ <€ Tom. A second is that (Aw)’ryToy > 1 with (Aw)Ty < 1 to guarantee rapid
exchange. Both these criteria can obviously be satisfied when T3y is long. However,
if the criterion for rapid exchange fails (as it can for water in the interior of erythrocytes,
as seen below), then the Swift-Connick model gives the usual result for exchange-
limited relaxation

1/ T =S/TM- [3b]

Note that at the critical condition, (Aw)ry = 1, Egs. [3a] and [3b] give the same
relaxation rate. However, when exchange is rapid, 1/7T5. increases as ty increases
whereas the reverse is true for slow exchange.

In the Swift-Connick model (26), the water molecules experience two environments
and the boundary between these environments is sharp. By contrast, in outer sphere
computation leading to Eq. [2¢c], water molecules may be considered either near the
magnetized spheres, where there is a chemical shift of order éw, or far away where
there is none. In the latter case, the distinction between the two environments is not
well defined because of the long range of the dipolar field. However, as long as 4 > R,
the contributions of each particle should be independent. More quantitatively, it is
seen from Egs. [1a] and [1b] that for 4 = 10R, the volume beyond a sphere of radius
A contributes 0.1 of the total relaxation rate. Thus, these equations should be valid
to better than 10% for A = 10R, corresponding to < 107>, For larger values of f, the
rates will be less than the linear prediction since the range of éw decreases when the
fields of neighboring particles overlap.
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It should be noted that the Swift-Connick (26) and Luz-Meiboom (27) approaches
are classical; rather than solve the appropriate quantum-mechanical problem, they
formulated the problem in terms of the Bloch equations (28), a set of equations that
describes the motion of the magnetization of the proton ensemble. This magnetization
is a macroscopic, potentially spatially varying quantity that is an average of the behavior
of many protons, each of which must be treated quantum mechanically if handled
individually. However, one may either solve the quantum-mechanical problem and
average the results over all protons, as was done for the outer sphere calculation leading
to Egs. [1a], and [b], or else derive a classical equation (analogous to Newton’s Laws)
that describes the motion of the macroscopic parameters (in the present case the
magnetization of the proton ensemble) directly. That is what the Bloch equations do,
even in the presence of spatially varying static fields, once a diffusion term has been
incorporated (29).

Equations [2c¢] and [3a] are identical to the expression of motional narrowing of
high-resolution NMR linewidths, usually derived using the Bloch equations, as was
discussed by Packer (30) in a related connection. For lines from two environments
with weighting f, chemical-shift difference Aw, and lifetime in the minority site 7y,
Eq. [3a] is the proper expression for the width (a measure of 1/75) of the motionally
narrowed line; the separation Aw is narrowed by the factor (Aw)ry, which must be
<1 for merging of the lines and subsequent narrowing to occur. Indeed, the expressions
for a motionally narrowed secular transverse relaxation are very general and arise
from the fact that boundary conditions are imposed on the diffusing protons, either
in space or in time, depending on the experimental conditions. Before applying the
theory of specific situations, this point will be pursued further.

Temporal and Spatial Boundaries

Hahn, in his first observation of spin echoes (/3), realized that the time course of
the free-induction decay after a 90° pulse was determined in the main by the non-
uniformities of the static magnetic field (given the magnet technology of that time),
but that much of the lost transverse magnetization could be “refocused” by application
of a second pulse (also 90° in his early work) a time 7y later to produce an echo of
the decay of the initial transverse magnetization. He, and subsequently Torrey (29),
solved the equations that describe these events (the Bloch equations with a diffusion
term), assuming a magnetic field with a constant gradient, and showed that the am-
plitude of the echo is multiplied by a factor that was exponential in —(Csri; + C7h).
The coefficient C; of this cubic term depended on the diffusion constant D of the
water molecules, the gyromagnetic ratio v, of the protons, and G, the component of
the gradient parallel to By:

C; = 2(v:G)*D/3. [4a]

This was for the case of unrestricted diffusion, i.e., no boundary conditions other than
the initial 90° pulse; for progressively longer times, a given molecule can diffuse in-
finitely far from its position at the time of the initial pulse and accordingly accumulate
an unlimited precessional phase shift. The —¢* behavior follows as a consequence. The
case of restricted diffusion is quite different.
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Equation [4a] can be cast into a form similar to that for outer sphere relaxation
and motional narrowing. Thus, for an imaging field with a constant gradient, it is
possible to compute an apparent 1/7 from the echo associated with a given 7y, which
is Tg/2 in MRI parlance. The apparent 1/7, will be a function of 7y; the longer 7y,
the greater this 1/75. In a time 734, a water molecule will diffuse a distance with a
mean component Ly along the direction of B, given by

L% =2Dry. [4b]
Defining
Awy =vGLy, [4c]

where Awy; is the range of field (in frequency units) experienced by the protons during
1, one obtains (by direct substitution) the expression for the apparent 7-dependent
1/T5y, as determined from the amplitude of the Hahn echo at time 27y:

1/ Ton = (Awp)*1u/6. [4d]

This is the same functional form as Eqs. [2d] and [3a], except that 7y, the analog of
v and Tp—parameters related to the microscopic properties of the samples—is de-
termined by the parameters of the experiment.

The spin-echo experiment requires, of course, that 7y < T3, i.e., that the water
molecules diffuse many times Ly and average their local environments in an obser-
vation time n7T,. From Eq. [4d], this leads to

(Awy)Ty <1, [4e]
analogous to Eq. [2e].

Restricted diffusion results when boundary conditions are imposed on the sample
that limit the excursion in local field that the protons experience. Such boundary
conditions may be imposed in either space or time. The second pulse in a Hahn 90-
180° experiment is a temporal boundary condition, reversing the phase of each pre-
cessing sign. Extending Hahn’s ideas, Carr and Purcell (/4) showed how the apparent
transverse relaxation rate can be decreased by more restrictive temporal boundary
conditions. They applied a sequence of n 180° pulses, the first a time 7cp = 7y/n after
the 90° pulse, and the remainder separated by 27cp. The result for the apparent re-
laxation rate, with the echo amplitude measured at the same 7 as in Eq. [4d], is

1/Tacp = (Awcp)?7cp/6 = (1/ Ton)/n?, [4f]
where

(‘30’(:}’)2 = (Awn)zfn- [4g]

The more closely spaced (temporal) boundaries both narrow the range of fields ex-
perienced by the protons and increase the rate at which this field distribution is averaged,
hence the quadratic dependence of the decrease in the relaxation rate on n.

Several authors have suggested other experiments in which the boundary conditions
are applied in time rather than in space, experiments quite familiar but not often
considered this way explicitly. One example, above, is the Carr-Purcell sequence (14),
in which periodic reversal of the gradient (as it appears to the proton spins) restricts
the range of field that any proton can experience. Another is due to Stejskal and
Tanner (31), who applied a strong gradient for a short time 751 between the 90-180°
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and 180-90° intervals in the spin-echo sequence, thereby directly limiting the time
that the protons experience a significant gradient. The description of their results can
also be put in a form similar to Eq. [2d],

1/ T = F(AwST)ZTST: (5]

where 7gr i1s the rate of decay of the transverse magnetization, which is exponential
in —; Awst s the range of field encountered during time 7s1, and F'is the fraction of
time between pulses that the gradient is on. Once again, the shorter ¢t becomes (and
thus more restricting the boundary conditions), the less the influence of the hetero-
geneous environment on 1/75, quite consistent with the language of motional nar-
rowing.

Robertson (32) addressed the problem of proton relaxation in a sample constrained
between parallel planes, separated by a distance d, that are normal to the direction of
B, and its constant gradient G. The planes impose spatial boundary conditions that
require the flux of magnetization normal to the planes to be zero. He solved the Bloch
equations, with a diffusion term, subject to the boundary conditions, and found that
the secular contribution to the long-time delay of the transverse magentization was
exponential in —¢, with a rate that depends on an average of the fields experienced.
Interestingly, the very short-time behavior involved an exponential in —¢3, with a
coefficient precisely that found by Hahn (13) for diffusion in an unbounded medium
with a constant gradient. The Hahn-like dependence persists until the protons have
sufficient time to sense that their spatial excursions are bounded before they lose
precessional phase in the gradient. For a distant scale even as large as microns (cell-
sized), the transition from —¢* to —t behavior occurs well below a millisecond, and
the cubic term will usually be unimportant. For longer times, the secular relaxation
rate contribution can be put in the form

1/ Tasec = (Awp)*74/120 [6]

where again Awg = v;dG is the range of field experienced by the diffusing protons and
T4 = d*/D is the approximate time required to diffuse between the planar boundaries.
In this problem, there is no equivalent of f since the constant gradient pervades the
entire volume. Nonetheless, Eq. [6] has the same form as Eqgs. [2¢] and [3a]. The
critical problem for this and more complex geometries is to compute the magni-
tude of the coefficient on the right-hand side equivalent to f, which here is very
small (1/120).

Motional narrowing in the geometry of Robertson (32) causes 1/75 to increase as
the fourth power of the separation of the planes; i.e., as d increases and the occurrence
of boundaries is diluted, both the range of field experienced by the water protons and
the time required to average this field increase, with a resultant increase in the secular
relaxation rate.

We have previously considered (33) an assemblage of identical magnetic dipoles,
spherical and impenetrable, distributed periodically in space (which implies that their
diffusive motion can be neglected relative to that of solvent). This, too, is a model of
restricted diffusion since periodic boundary conditions are equivalent to physically
delimiting a region in space: the diffusive flow of magnetization normal to the bound-
aries must be zero (V,M = 0). This problem can be transformed to a form analogous
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to Robertson’s, though somewhat more complex. For both dia- and paramagnetic
particles in a uniform external field, the periodicity of the local field arises directly
from the spatial periodicity of the particles since the magnetic moment of each particle
is proportional to the magnitude of the applied field and aligned with it. This periodicity
also holds for ferromagnetic particles, since their field-independent magnetization at
reasonable fields must necessarily be correlated with the field direction. The system
of spherical particles is fully characterized by the magnetic moment u of the particles,
their radius R, and their separation 24. The volume fraction foccupied by the particles
is readily found to be /= w\%/6, where A = R/A.

The problem is to calculate the magnitude of the transverse magnetization (the
spin-echo amplitude) at time ¢ = 27 following a 90° pulse applied at ¢ = 0 and a 180°
pulse applied at ¢t = 7. These are the same experimental conditions considered by
Robertson. Our calculations proceed much as his do, except that the gradient is not
constant; it arises from the moments of the particles, which generate fields that decrease
as 1/r3, where r is the distance from the center of a particle. This three-dimensional
geometry is different from Robertson’s, which is one-dimensional, but can be reduced
to his by means of a simplification that should not seriously affect the results—mainly
because of the similarity of the boundary conditions. In the present case, a water
molecule also moves between two boundaries: the surfaces of the impenetrable spheres
and the midpoints of two neighboring spheres and the condition zero flux of the
magnetization holds at both. Our simplification is to neglect the curvature of the
magnetized spheres, which is akin to neglecting the angular dependence of the dipolar
field. This makes the problem one-dimensional and equivalent to that of Robertson;
it clearly characterizes the limit of high particle density. However, in contrast to the
true one-dimensional problem of Robertson, our problem is characterized by two time
scales: the time to diffuse out of range of a particle (rx = R?/D, which is a measure
of the range of the nonuniform field), and the time to diffuse between particles (7, =
A?/D). The ratio of these two times is related to the volume fraction £, which does not
appear in Robertson’s formulation.

The details of the computation follow those of Robertson quite closely, and the
short- and long-time results are similar as well. One difference is that only the mean
squared fluctuations of the component of the local field parallel to B, contribute to
the secular term of 1/75, which introduces a factor 0.8 into the results (a factor not
included previously (33)). The other components of the fluctuations produce the dis-
persive, nonsecular terms. The result for the exponential secular relaxation becomes

1/ Tasee = Co /NBw)*7 4 = (Co/(6 f /7PN bw)*7 R = Cod77iMo/3)’ A%/ D, [7]

where M(=3u/47R?) and the other quantities have been defined earlier. For uniformly
magnetized particles that differ only in size, M, is independent of size and therefore
particularly useful in computations. For paramagnetic particles, M, can be computed
knowing B, and the paramagnetic susceptibility of the particles (which can be obtained
using Curie’s law). Equation [7] should afford a good qualitative description of the
relaxation behavior at high particle densities, /= 0.01, a limit in which 1/7; should
decrease with increasing /. However, because of the neglect of the curvature of the
particles, Eq. [7] will overestimate 1/7, except at the highest densities. By contrast,
the quantum mechanical outer sphere theory, with the assumption of independent
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particles and essentially unrestricted diffusion, represents the limit of low particle
density. The overall behavior is seen quite clearly in Fig. 2, in which the predictions
of Egs. [2d] and [7] are plotted.

In a system for which the averaging time is defined by spatial boundary conditions,
it is possible to shorten this time and reduce the secular relaxation rate by application
of a Carr-Purcell pulse sequence in a time that is short compared to the spatially
determined correlation time. Thus, in the Swift-Connick case (26) with rapid exchange,
Eq. [3a] applies, and a sequence with spacings that are short compared to 7 will
reduce 1/75... If not, Eq. [3b] applies, relaxation is exchange limited, and a Carr-
Purcell sequence will have no effect. A Carr-Purcell sequence can also influence a
measurement of outer sphere relaxation, as characterized by 7z, Eq. [1c], though the
experiment is only realistic for cell-sized particles. This point, though demonstrated
by Luz and Meiboom (27) both theoretically and experimentally, appears to be not
generally recognized. Rather, the view is often expressed that a Carr-Purcell sequence
can only convert a dependence of the decay of the transverse magnetization that is
exponential in —* (arising from unrestricted diffusion in a constant gradient) to one
that is exponential in —; this, though true, is a special case of the more general utility

of Carr-Purcell and related pulse sequences.
APPLICATIONS
Small Paramagnetic Centers
It is known that Eq. [la] affords an excellent quantitative description of the 1/7

NMRD profile of aqueous solutions of Mn?* ions chelated by ligands that exclude all
inner-coordinated water (33); moreover, the 1/7, data extant agree with the prediction
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of Eq. [1b] that 1/T, and 1/T, should be about equal over most of the accessible field
range for such small complexes. Similarly, the 1/7y NMRD profiles of aqueous so-
lutions of nitroxide free radicals are also readily accounted for by Eq. [1a], though the
anisotropic geometry of these centers precludes the same level of quantitation as for
chelated Mn?" ions (23). The situation if more complex, however, for ferritin, the only
paramagnetic complex that is much larger than the small, single-ion, chelate complexes
but is still small on a biological scale, and for which relaxation data are available.

Ferritin

Ferritin is an iron-storage protein that can hold about 3000 ferric ions in a para-
magnetic oxyhydroxide core that is surrounded by a spherical shell of protein 130 A
in diameter and 30 A thick (35). The demetallized protein is synthesized in vivo,
predominantly in the liver and spleen, in response to the presence of excess iron, a
condition associated with, for example, idiopathic hemochromatosis and transfusional
therapy of thalassemic patients. Such individuals may have a concentration of ferric
iron in the liver more than 10-fold above the normal concentration (about 0.1 mg/
ml or 2 mM). MRI of such patients shows a pronounced darkening of these organs
(9, 10), perhaps not intuitively surprising but not explicable from the usual theory of
relaxation and the assumption of ideal structure for the ferritin core (/6).

Figure 3 shows both the longitudinal and the transverse NMRD profiles, computed
using Eqs. [1a] and [1b], for a solution of paramagnetic ferritin containing 1000 ferric
ions per protein molecule. This loading, about one-third the maximum, was chosen
for ease of comparison with earlier data (/6). The results are expressed in units of
relaxivity (relaxation rates per mM of ferritin). The value of x?, Eq. [2a], is a function
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FIG. 3. The NMRD profiles expected for solutions of ferritin molecules (1000 Fe** per core), at 35°C,
with about 30% of their maximum core loading of iron. The core was assumed to be an ideal paramagnetic,
and its magnetic moment was computed using Curie’s law. The increase in relaxivity at high fields, in
contrast to the behavior in Fig. 1, arises from the increase in magnetization of the core with increasing
external field.
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of magnetic field for paramagnetic particles and was calculated using Curie’s law; the
density of paramagnetic ions in the 70-A-diameter ferritin cores was obtained by
taking 3000 molecules as the number that fills them. The observed paramagnetic part
of the transverse relaxivity at 20 MHz is 150 (mM s)~' (1/T, ~ 3 s™' for a 20 uM
sample), more than three orders of magnitude greater than the computed value shown
in Fig. 3. The paramagnetic component of the longitudinal relaxivity due to the core
ions is unobservably small at all fields, <5 (mM s)~', in agreement with Fig. 3. However,
the predicted field dependence of 1/7, does agree with that reported (36) for a limited
range of field (8-60 MHz).

There appears to be no way to account for the relaxivity of ferritin solutions unless,
as noted earlier (16, 33), it is assumed that the magnetization of the cores is far greater
than the paramagnetic value computed assuming ideal chemistry of the solid-state
polycrystalline ferric oxyhydroxide core. Such a condition could arise from incomplete
oxidation of a few percent of the ferric core ions, resulting in inclusions of the ferro-
magnetic mixed-valence oxide magnetite. This is not unreasonable since the ferritin
core can be loaded only by presenting it with ferrous ions from solution, which are
then catalytically oxidized by the protein to ferric as they become incorporated in the
core. Figure 4 shows the 1/7) and 1/7; NMRD profiles computed, using Egs. [1a],
assuming 76 ferric ions per core aligned ferromagnetically; this gives a relatively large
moment that is independent of field. (The paramagnetic response to a field of 1 T
would be an alignment of only 5 out of 1000 spins. Only at higher fields, above about
100 MHz, will the induced paramagnetic moment play a role and contribute a quadratic
dependence of 1/, on magnetic field.) The number of aligned spins was chosen to
produce agreement with the 1/77, data at 20 MHz (16). However, the computed 1/ T,
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FIG. 4. The NMRD profiles of 20 uM ferritin, calculated at 35°C, assuming that the chemistry of the
core is nonideal. It is postulated that the oxidation of the iron ions is incomplete so that a single region of
mixed ferrous-ferric oxides (e.g., magnetite) exists in the core, with their spins permanently aligned. In
particular, the curves were computed for the case of 76 aligned ferric ions (Fe*), chosen to have the computed
1/T, agree with the single data point (filled circle) at 20 MHz (16). The computation agrees neither with the
reported field dependence of 1/T; (36), nor with the single 1/T, result (open circle) (16).
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NMRD profile does not exhibit the reported field dependence (36), and that computed
for 1/T, does not agree with the observed magnitude of 1/7;, which is essentially zero
at all fields (/6). A possible explanation within the present conceptual framework i1s
that small regions of the core are ferromagnetic, with the directions of their magne-
tization (which, because of magnetic anisotropy energy, would be aligned along one
of several equivalent crystallographic axes) random at zero field. As B, is increased,
the entire core would become magnetized, thus behaving much as a paramagnetic
with a very large susceptibility. Moreover, a high field is required to magnetize magnetite
since it has a large crystalline anisotropy energy. This could account for the magnitude
of 1/T, and its dependence on field, but may overestimate 1/77. In summary, unless
one assumes that nonideal chemistry plays a role in the transverse relaxation of ferritin
solutions, there is no ready explanation for the solution data (/6) and the MRI ob-
servations (9, /0). There appear to be no published data inconsistent with the conjecture
presented here.

Blood (Erythrocyte Suspensions)

Upon deoxygenation, the spin state of the heme-iron moiety of hemoglobin changes
from S = 0 to § = 2 (diamagnetic to paramagnetic). Thulborn et al. (12) reported
changes in 1/7; of the protons of whole blood that reflect this magnetic transition and
which disappear when the cells are lysed. The increment in the secular component of
1/T, upon deoxygenation is 44 s™' at 182 MHz, with an approximately quadratic
dependence of this rate on field. Thulborn et al. used a Carr-Purcell-Meiboom-Gill
sequence (/4, 15), from which a correlation time of 0.6 ms was derived from the
dependence of 1/75 on pulse spacing (27). Not only did they note that this correlation
time was of the order of the 7 expected for particles the size of erythrocytes (and
which, because of high concentration of cells, is about the same as 7,), but they also
noted that the value of Aw needed to explain their data, using the equivalent of Eq.
[3a] above, could be accounted for by the known value of the magnetic susceptibility
of hemoglobin (x = 2 X 1077, which they checked independently). Moreover, they
pointed out that the measured correlation time is an order of magnitude shorter than
the residence lifetime of a water molecule in an erythrocyte and concluded that *““the
dependence of blood 75 on oxygenation results from the diffusion of water protons
through local field gradients arising from the increased volume susceptibility of deox-
ygenated erythrocyte cytoplasm.” However, they did not indicate whether this diffusion
was predominantly intra- or extracellular. The question at hand now is the extent to
which these data for blood (and comparable systems) can be explained, with reasonable
quantitation, by the outer sphere theory discussed here applied to a model for blood,
or whether intracellular relaxation is also important.

Erythrocytes are neither spherical nor impenetrable; the fact that the protons of all
the water of blood (one-third intracellular and two-thirds extracellular; correction for
the volume occupied by the hemoglobin gives the hematocrit value of 0.45) relax
identically demonstrates that mixing is rapid on a 75 time scale. However, exchange
is sufficiently slow (the intracellular water lifetime is about 8 ms for human erythrocytes
(37, 38)) so that only about 1 encounter in 10 allows a water molecule to cross the
erythrocyte membrane; therefore the boundary conditions for outer sphere diffusion
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should be little affected and the theoretical results essentially unchanged by the limited
permeability of the membranes. Accordingly, we first consider as a model a water
suspension of impenetrable “spherical erythrocytes™ with the same volume and volume
fraction as those in blood: a radius of 2.8 um and a hematocrit (volume fraction)
of 0.45.

The major distinctions between model erythrocytes suspensions and the ferritin
solutions considered above—similar in that they both involve paramagnetic spheres—
are first that the density of Fe** ions in erythrocytes is ~6 mM compared to ~8 M
in the ferritin cores; thus the magnetization of the erythrocytes and therefore the
equatorial field at the surface is 1/400 that of ferritin. Second, because the diameter
of erythrocytes is about 600 times that of ferritin, the correlation time is much longer.
For fields up to ~50 MHz, Eq. [2e], the condition for motional narrowing holds very
well for erythrocyte suspensions (moreover, a modest violation of this condition is
known to have but a small effect on the predictions).

Figure 5 shows the changes of 1/7; induced by deoxygenation of rat blood, at 37°C,
reported by Thulborn et al. (12). We first use Eq. [7], obtained for outer sphere relax-
ation using the Bloch equations, to compare theory with the data of Thulborn ez al.
Though the computational results are not shown for values of f as great as the he-
matocrit, even choosing a value for f of 0.22 (about half that of the model, which
might be expected to compensate, in part, for the nonspherical shape of erythrocytes)
gives a prediction that fails by two orders of magnitude to account for the data. Thus,
the ordinate, Fig. 2, that goes with the point /= 0.22 is 2 X 107, obtained as follows.
Assuming a cell content of 20 mM Fe?* ions in the high spin S = 2 state, one can
calculate the susceptibility (or use the measured value (/2)) and conclude that Aw
= 960 s~' at 182 MHz. Taking the measured correlation time of 0.6 ms gives 1/7 5
~ 0.1 s”', in contrast to the measured value of 44 s~', Fig. 5. Thus, it is quite clear
that outer sphere relaxation, on the spherical model, is inadequate to account for
the data.

The next consideration is whether outer sphere relaxation calculated for a more
realistic cell shape can account for the data; the following argument shows that it only
makes things worse. Consider the erythrocytes to be flat disks. As such, they would
orient, in a time of about 20 s, with their planes parallel to the field, though not
necessarily parallel to each other. Nonetheless, a reasonable approximation to this
would be a one-dimensional array of alternating slabs of blood plasma and hemoglobin,
the latter about 2 um thick, with the spacing adjusted to match the hematocrit. To
first order, the boundary conditions on Hy, the magnetic field intensity, require that
there be no discontinuity at the interfaces; therefore H, will be uniform throughout
space. As a result, there will be no extracellular field gradients and therefore no outer
sphere contribution to the relaxation. There will be a discontinuity in B across the
boundaries of magnitude 47x H,, the largest possible for any geometry, corresponding
to Aw = 2.5 ppm or 2900 s~ at 182 MHz. The contribution to 1/T5,. Will be the
lesser of the results of Egs. [3a] and [3b]. For 7y = 8 ms, the value for human eryth-
rocytes, Eq. [3b] dominates above 50 MHz, giving 1/ T = 40 5! as an upper bound
on the relaxation rate. This is less than half the maximum rate observed, Fig. 5, and
if this is to be ascribed to intracellular relaxation—which appears to be necessary—
then the lifetime of water in rat red cells must be less than that in human cells by at
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FIG. 5. The filled circles show the contribution to 1/T) of water protons of rat blood, at 37°C, induced
by deoxygenation (/2) and the vertical bars show the estimated uncertainty. In the present work, it is argued
that this relaxation contribution arises from diffusion of blood water in the intracellular gradients of the
local magnetic field that arise upn deoxygenation, which causes hemoglobin to become paramagnetic. The
solid curve results from the application of the theory of secular relaxation in nonuniform fields to the interior
of erythrocytes, assuming an intracellular lifetime of 3 ms (see text). The corresponding correlation time of
0.6 ms was taken from Thulborn ef al. (12). The internal gradients are related to the toroidal shape of the
blood cells (/1) and a value of 500 s™' was chosen as the renge of intracellular field variation. The dashed
curve is the prediction assuming no limitations on the relaxation rate because of slow exchange.

least this factor. The solid curve, Fig. 5, assumes this, as well as the idea that the
observed correlation time is associated with intracellular diffusion in the intracellular
field gradients that arise from the toroidal shape of erythrocytes.

A realistic model for erythrocytes is a torus with a filled center, the latter with about
20% of the volume (39). Once aligned with the external field, different regions within
the cells will have different fields because of differing demagnetization factors (/1),
which depend on geometry. Taking an average range for Aw within the cells of 500
s~! for an external field of 182 MHz and the measured correlation time of 0.6 ms,
one can calculate the value of 1/7T5msc, the intracellular secular relaxation rate, for
any field. Postulating a water lifetime 7y in rat erythrocyte of 3 ms gives the solid
curve in Fig. 5, using the expression (26)

1/ Tosee = [/ Topsec + ™) [8]

for exchange between two environments. The dashed curve results if the limits set by
exchange are ignored. (The value 500 s™', compared with the maximum of 2900 s™'
above, can readily be argued from the toroidal model and the proper expression for
averaging the internal gradients, Eq. [22] of Ref. (27).)

Thus, we see that for deoxygenated, paramagnetic blood, the observed field-depen-
dent values of 1/7, can be encompassed by the theory of outer sphere relaxation as
embodied in Egs. [1a] and [1b], by applying it to diffusion in the intracellular field
gradients of the erythrocytes, a novel result. Diffusion of water in the external field
gradients adds little to 1/75.. Implicit in this interpretation is that 1/T5e of blood
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(with intact erythrocytes) should be quite sensitive to temperature and to the shape
of the erythrocytes, which can be altered drastically by altering the tonicity of the
plasma, predictions which can be readily checked experimentally.

Ferromagnetic Particles

Solid magnetite. Lauterbur et al. (40) have shown microscopic MR images of fer-
romagnetic (magnetite) particles, ~5 um diameter, suspended in agar gels. The images
mimic the shape of the d-like dipolar distribution of magnetic field intensity produced
by the particles and are relatively dark throughout a volume over 10 times the particle
diameter. The very fact that the images display the shape of the local field indicates
that the criterion for motional narrowing fails: in a time of order 73, which is no
longer than a few tens of milliseconds, the water protons do not diffuse very far com-
pared to the scale of the particles. (The time for water to diffuse 25 um is about 0.5
s, even assuming that the diffusion of water is unimpeded by the agar; it would be
longer otherwise.) Thus, unless a Carr—Purcell or similar series of pulses is applied,
each proton must be assumed relatively stationary in space with an apparent 1/7;
given by the Hahn expression, Eq. [4d], for the magnitude of the gradient at the
position of that proton. The field at the surface of magnetized magnetite is about 0.13
T (41) and, for a particle with R = 2.5 um, the gradient at the surface is 1.5 X 10’ G
cm™', but almost 10°-fold smaller 75 um away. With a pulse separation of, say, 5 ms,
one can readily estimate the rate of decay of the transverse relaxation 75 um away to
be about 40 s™', corresponding to an apparent 7, of 25 ms; this would produce a
relatively dark region in an image. Because of the radial dependence of the gradient,
this relaxation time increases as the eighth power of the distance of the protons from
the particle. As a result, the particle should not alter image contrast much beyond 75
um, a conclusion supported by their data.

Thus, for large, solid, ferromagnetic particles, the situation is almost macroscopic.
Diffusion does not carry water very far compared to the range of the local fields
experienced by a proton during a time of the order of a typical Tg pulse separation;
therefore the usual Hahn computation (Eq. [4d]) can be used to find 1/7%., at each
position in space around a particle. As noted by Lauterbur et al. (40), for particles the
size of cells, the gradients are sufficient to produce a dark area over a volume ~ 1000
times that of the particle. For MRI microscopy, in which pixel sizes are not yet as
small as cell dimensions (about 10-fold larger, linearly), this magnification is extremely
useful. However, for clinical imaging, with much larger pixels, the contrast enhance-
ment will be diluted by the size of the pixel volume relative to the volume of the
region with significant gradients.

As the size of the particles is reduced, two things occur that influence the behavior
of ferromagnetic agents: the surface field remains unchanged but the surface gradient
increases, and the time 7 required to diffuse out of range of a particle decreases. For
R <100 A = 1072 um, 7 < 0.02 us, which is short enough for Eq. [2e] to hold and
Egs. [1a] and [1b] to be appropriate for computing both the secular and the nonsecular
contributions that determine 1/7, and 1/7,. In this limit, the procedure is precisely
that used here in the analysis of ferritin, and thus should be straightforward. Mendonca-
Dias et al. (42) have presented data for particles somewhat larger than this limit, 0.05
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w diameter magnetite. They find 1/75 = 10 s™! for 10 um magnetite, corresponding
to ~4 X 107" M particles. One can readily compute 7z = 2.5 X 1077 s, at 25°C, dw
=34 X 10"s™", f= 1.6 X 107%, and, from Eq. [2d], 1/T> = 55 s, a rate not too far
from the observed value.

For particles of solid magnetite of intermediate dimensions, the situation becomes
more complex than for small particles in several ways. Though éw, the strength of the
interaction, remains fixed, 7, the correlation time, becomes larger. As noted above,
1/ T increases for fixed funtil 7z becomes so large that the condition for motional
narrowing no longer holds. In essence, 1/75 in the vicinity of the particles becomes
so great that the particles relax before they “escape’; the situation becomes essentially
one of slow exchange, as expressed by Eq. [3b]. At this point, the dependence of 1/
T’ on particle size reverses sign. This occurs for the larger ferromagnetic particles
as well; however, in this case, the volume around the particles is so large that one can
compute a meaningful spatially dependent 1/7,. This is not so for the ferromagnetic
particles of intermediate size for which the size scale is much too small compared to
the smallest reasonable pixel size. Because of slow exchange, the observed relaxation
rates will be less than predicted by Egs. [1a] and [1b], but otherwise difficult to compute.

“Low-density magnetite.” Recently, a novel composite material has been investigated
for its potential utility as a contrast agent for the reticuloendothelial (RE) system (43,
44). These are proprietary materials (Advanced Magnetics, Inc., Cambridge, MA) that
appear to be made of small (100-200 A)-diameter magnetite (FeO - Fe,03) particles
held together by a hydrophilic organic binder to form large, roughly spherical, entities
about 0.5-1.0 um in diameter. The magnetic material in the larger particles is highly
diluted, to about 1/250 the density of magnetite, so that dw, the equatorial field at the
surface, is also reduced by this same factor, to ~5 X 10™* T at room temperature
when these particles are magnetically saturated. There are about 200-2000 magnetite
particles in each composite particle, presumably randomly oriented. We will refer to
this composite material as “low-density magnetite,” or LDM.

As in the conjectured model for the core of ferritin, LDM will be unmagnetized at
zero field, even though each of their small magnetite core particles will always be fully
magnetized (because of their ferromagnetism), since their orientations will be random
and the net magnetization of each LDM particle will sum to zero. However, by ap-
plication of B, sufficiently large to overcome the crystalline anisotropy energy of mag-
netite (4/), LDM particles will become magnetized to the full saturation magnetization
of magnetite at that temperature (corrected of course by the large dilution factor for
these agents). Such behavior is sometimes called “superparamagnetism,” since the
field dependence of the magnetization of these materials has the form of a typical
paramagnet, but the resulting magnetization is typically 200-fold greater than that of
their paramagnetic analogs.

When introduced intravenously, LDM is scavenged by the RE system and, in liver,
appears only in the Kupffer cells and not in the hepatocytes (43). Kupffer cells, about
one-fifth the diameter of hepatocytes, make up but a few percent of the liver volume.
The liver, magnetically, then becomes analogous to deoxygenated blood, with super-
paramagnetic Kupffer cells being the analog of erythrocytes, and the water of the
hepatocytes, known to be very mobile (7), being the analog of plasma water. A major
difference, however, is that /* is much less for Kupffer cells in liver than for erythrocytes
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in blood (cf. Fig. 2) and that the secular relaxation is all due to extracellular interactions
(see below). Saini et al. (43) have reported a significant increase in 1/7) of excised rat
liver for rather large intravenous doses of LDM (333 umol Fe/kg, at which dose the
liver relaxation rate, and presumably the Kupffer cells, are saturated) and significant
changes in MRI contrast for dosages 40-fold lower. Unfortunately, they do not report
the concentration of LDM (Fe) that settled in the liver other than to demonstrate its
location in the RE system. The question is whether the present theory can explain the
observed relaxation rates.

LDM in liver. We will assume that 25% of the total bolus of 8 umol/kg of LDM
reached the liver RE system, a dosage that was found to “influence the signal intensity
from the entire liver,” which means that 1/7 5 is of the order of 1/7; of undoped
liver, or ~30 s'. Taking liver to be about 5% of the mass of a 500-g rat and the
Kupffer cells to be 3% of the liver gives 1 g, or about 1 ml of tissue containing 1
umol—or | mM—of Fe ions. The Kupffer cells then each contain four LDM particles,
on average. Since each paramagnetic ion has an average moment of 2.8 Bohr magnetons
at room temperature (4/), one can readily calculate (using Eqgs. [2b] and [2f]) that the
equatorial field is small. Thus, éw = 1.7 X 1073 s7!; 7 = 3.3 X 107* s, assuming 1
um radius for the Kupffer cells; and (éw)7g = 0.5, indicating that the limit of motional
narrowing should be a good approximation. Substituting values for the terms in Eq.
[2d] gives 1/ T = 30 57! for the outer sphere contribution to relaxation, in remarkable
agreement with the data.

Exchange of water from the Kupffer cells is demonstrably too slow to contribute to
1/T, and 1/T,. This can be estimated from the results of Holtz and Klaveness (45),
who introduced starch granules labeled with Gd(DTPA) into Kupffer cells and saw
no change in 1/7) until the tissue was mechanically homogenized and the paramagnetic
agent made accessible to all the liver water. Without going through the numerical
details, it is readily shown that if exchange is too slow for the intracellular Gd(DTPA)
to influence 1/7, at the concentrations used, it is certainly too slow for LDM to
contribute to 1/7> by exchange of water between Kupffer cells and the rest of the liver.

LDM in blood. Saina et al. (43) also show that the effect of LDM on 1/T; of whole
blood is about 10-fold less than that for liver. Again, though quantitation is lacking,
one can readily account for this difference; indeed it is just what one would expect
for comparable concentrations of LDM in blood and liver, i.e., for the same value of
/. In blood, the LDM is extracellular. In liver, the LDM is contained in the Kupffer
cells, with a radius of about three times that of the LDM particles, which from Eq.
[2b] gives a factor of 10 in 7 and therefore in 1/7 5.

DISCUSSION

The secular contribution to 1/75 is produced by fluctuations in the component of
the magnetic field that is parallel to the external static field. When these fluctuations
arise from the diffusive motion of the protons through gradients in the external field
By, the intrinsic fluctuation rate is relatively slow, and the nonsecular contributions
to relaxation produced by fluctuations transverse to the direction of B, disperse away
well below any imaging field. In this limit, the correlation time often becomes so long
that B, cannot be conveniently made sufficiently small to avoid dispersive 1/7, effects.
In addition, application of a Carr-Purcell-Meiboom-Gill sequence, with its phase-
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shifted B, parallel to the transverse magnetization, can also introduce unsuspected 1/
T, -like effects (46).

It is often convenient to handle the situation of external gradients classically, using
the Bloch equations. The same results can be obtained quantum mechanically by
Fourier analysis of the fluctuations and computation of the appropriate transition
rates of the protons. This latter procedure is usually reserved for the limit in which
the scale of the spatial variation of the local field is of macromolecular dimensions or
less. In this limit, one generally derives expressions for both the secular and the non-
secular components of the relaxation rates, and the close connection of the respective
contributions is readily apparent (Egs. [1a] and [1b]). In the present work, we reviewed
the theory of relaxation by diffusion of protons in the outer sphere environment of
small uniformly magnetized spheres and demonstrated its relation to the case of larger
particles, paralleled by the corresponding relation between the quantum-mechanical
and classical approaches.

There appears to be no problem in describing (or at least rationalizing) relaxation
by paramagnetic cells (e.g., deoxygenated erythrocyte suspensions and LDM-loaded
Kupffer cells) and cell-sized ferromagnetic particles. Moreover, we would agree with
the earlier conclusion of Packer (30) that diamagnetic cells (since the magnitude of
their susceptibility is 100- to 1000-fold less than their paramagnetic counterparts)
would make no observable contribution to 1/75. For magnetized particles of inter-
mediate size (~200 A diameter; virus size), the situation is somewhat different. When
ferromagnetic, the condition for motional narrowing breaks down and computation
becomes difficult. For ferritin (and hemosiderin), which ideally is paramagnetic, there
is a major discrepancy between theory and observation for 1/7, at imaging fields.
However, the demonstrated validity of the theory of outer sphere relaxation for much
smaller paramagnetic complexes makes us conclude that the problem is in the material
and not in the theory. We conjecture that there are regions of the ferritin core that
are ferromagnetic; the problem has been relegated to biochemistry. It remains an
important one, however, since ferritin deposits are often invoked to explain problematic
dark spots in MRI of the brain (47, 48).

An important point that is apparent from the present work is that the nature of the
spatial distribution of a fixed quantity of magnetic material can influence 1/7, mark-
edly; for improved relaxation enhancement, a smaller number of larger particles is
preferable. As seen from Eq. [2d], both 1/T), and 1/7) increase as the square of the
radius of the particles as long as the criterion for rapid exchange is not violated.
Experimentally, this effect was used to explain the greater efficacy of LDM in liver
compared to blood (43). Similar considerations will also apply to liposomes and syn-
thetic vesicles loaded with paramagnetic cores, as have been investigated recently (49).

The application of the present work to relaxation in and near hematomas as they
evolve clinically (50), an important application not considered here, should not be
too difficult. The effects should be more akin to those of paramagnetic cells than
ferromagnetic particles, since the density of Fe’* and Fe®* ions is in the range of
millimolar rather than molar, as it is in erythrocytes and the cores of ferritin. The
major difficulty in this case—and, we suspect, in many other cases—will most likely
be in modeling the condition rather than in predicting the results of the model, judging
from the ideas and conclusions presented here.
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